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Abstract--Asymmetric  fabrics elements abound in deformed rocks. They arc best understood by revising our 
assumptions regarding the symmetry, homogeneity and steadiness of the stress, strain and kinematic regimes 
operative during tectonism. With the aid of new off-axis Mohr circle constructions, the ramifications of 
asymmetric tensor phenomena may be evaluated and the link between theory and observation may be 
strengthened. Stress in rocks is always a symmetric tensor phenomenon under conditions of equilibrium and 
homogeneity but it may be asymmetric in certain circumstances, resulting in the development of only one of a 
possible pair of symmetric conjugate structures. Deformation is generally asymmetric and is often modeled as the 
outcome of steady flow, whereas it may be the cumulative result of unsteady, or accelerating, flow. Polar loci of 
normal and shear stresses, longitudinal and shear strains, and rotations illustrate effects which may help explain 
natural patterns of fabric asymmetry. This theoretical treatment provides the basis for evaluating field and 
laboratory observations that might otherwise to considered contradictory or polydeformational. 

INTRODUCTION 

IN AS at tempt to better  understand the fabrics of de- 
formed rocks, structural geologists have extended theor- 
etical analyses beyond basic models of pure shear and 
simple shear deformation. At the Penrose Conference 
whose proceedings are reported in this Special Issue, 
much discussion concerned the recognition of pure and 
simple components  of general shear deformation in 
rocks. However ,  whilst the general shear model cur- 
rently in vogue improves upon pure and simple shear 
end members ,  it is still highly restrictive. The pure shear 
component  of deformation is assumed to act orthogonal 
to the plane of simple shear, the flow regime leading to 
deformation is generally assumed to be steady-state and 
the causal stress regime is assumed to be always in 
equilibrium and therefore symmetric. The purpose of 
this paper  is to go beyond the limits of these simplifying 
assumptions and examine the implications of general 
non-equilibrium stress, general non-steady flow and 
accelerating shear deformation for the development  of 
structures in rocks. 

STRESS THEORY 

NN~i n 

(a) 

(b) 

Fig. 1. (a) Classical construction for illustrating the stress o i on a cubic 
element face of area A' and unit normal n due to the action of a surface 
force F i. (b) cr~ is the dextral shear stress on the sides of the cubes; - a s  

is the sinistral shear stress on the tops of the cubes (see text). 

oi = Fi * n, (1) 

where A = 1, oi denotes the stress contributed by the i-th 
force and the star product F i * n (De Paor 1990) denotes 
a vector in the direction of the force Fi with magnitude 
equal to the dot product F i • n (Fig. la).  The total stress 
at resulting from all surface forces i = 1, 2, 3, 4 . . . .  
acting on the plane is given by 

The symmetry of stress 

Textbooks and other standard references on stress in 
structural geology begin with a proof  that stress is a 
symmetric tensor. Consider the surface forces F~, Fz, F 3, 
F 4 , . . .  etc., acting on an elemental  area. Let Fi be one 
surface force distributed across a cross-sectional area A 
and let n be a unit vector normal to a plane; n is inclined 
at an angle 0 to the line of the force. The stress on the 
cross-sectional plane is Fi/A and the stress on the in- 
clined plane of area A' is  Fi/(A/cos O) or more simply 

crt = ~ (Fi * n). (2) 
i 

As n varies in trend and plunge, the total stress cr t 
describes an el l ipsoid--the stress ellipsoid (some text- 
books complicate matters by the mistakenly summing 
the forces first--Zi(Fi) * n gives a line, not an ellipsoid, 
and is not a correct expression of the stress state). 

The total stress at may be resolved into components  of 
normal stress or, and shear stress ~ acting, respectively, 
perpendicular and parallel to the plane, 
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and 

(see De Paor 1990). 

o n = n * ot (3) 

o~ = % - (7. (4) 

Now consider the plane to be one side of an elemental 
cube. According to the standard argument, in a homo- 
geneous system at equilibrium, the magnitudes of nor- 
mal and shear components of stress on opposite cube 
faces must be equal, for otherwise the cube might begin 
to travel in the direction of the resultant force and/or 
spin with the sense of the resultant couple. This proof 
explicitly excludes inhomogeneous force fields or con- 
ditions of disequilibrium. In the case of inhomogeneity, 
a gradient may exist in the shear stresses acting on the 
tops of neighboring cubic elements (Fig. lb) and the 
requirement of symmetry (equal opposite shear stresses 
on tops and sides of cubes) places a severe restriction on 
how the stress field can vary in space. By analogy with 
strain, it is difficult to envisage heterogeneous defor- 
mation gradients in a field which is everywhere irrotatio- 
nal (difficult but not impossible: heterogeneous 
compaction in a sedimentary setting and flattening in the 
aureole of a perfectly spherical intrusion are two solu- 
tions). If a body is in disequilibrium, the forces acting on 
an element do not balance but are divisible into a 
balance of forces which deform the body, a resultant 
force which displaces it and a couple which rotates it. 

Table 1. Notation 

A area of plane 
a, b, c arbitrary lines 
d dextral 
F i i-th surface force 
F Mohr envelope for pre-fractured rock 
i arbitrary integer 
l Mohr envelope for intact rock 
n unit normal vector 
p pole to Mohr stress circle 
P pole to Mohr strain circle 
q second intersection point (stress) 
Q second intersection point (strain) 
Q.. Qh, Q, second intersection points (arbitrary lines) 
Q0 second intersection point (initial state) 
Q l  second intersection point (perpendicular line) 
s sinistral 
S stretch (final/initial length) 
S- stretch of perpendicular line 
t trace of plane 
(z rotation (change in orientation) 
cz' angular velocity 
r '  strain rate 
~'" acceleration 
q) angle of stability 
t I, angular shear 
y shear strain 
v angle between eigenvectors 
~v change in v 
~J~ stress due to surfacc force F i 
01'  (Y2 principal s t r e s s e s  
cy total stress on a plane 
%,  o, normal and shear stress components  
c/ total stress on perpendicular plane 
u'~, o~ normal and shear components  of o' 
6~ mean shear stress 
o i sum over i 

dot product 
* star product 

Malvern (1969) presents a more general proof of 
stress symmetry based on Cauchy's equations of motion 
but nevertheless accepts the existence of asymmetric or 
'couple stress' conditions when the force field is non- 
conservative. Indeed, asymmetric stress, or 'couple 
stress', has been extensively discussed in the classical 
mechanics literature (see Voigt 1887, 1895, Cosserat & 
Cosserat 1909, Huen 1913, G/inter 1958, Kr6ner 1960 as 
reviewed in Truesdell & Toupin 1960; also see Biot 
1965). In physics, couple stresses are known to occur in 
magnetic materials under a high magnetic field, for 
example. In the field of structural geology, De Paor 
(1981) pointed out some of the implications of stress 
asymmetry for rocks. A complete discussion of asym- 
metric stress theory is beyond the scope of this paper. 

Koenemann (1992, and oral and personal communi- 
cations) argues that classical mechanics, since the time 
of Cauchy, is fundamentally flawed and that stress is 
always asymmetric. It would be unfortunate if those who 
reject these arguments were to ignore the possibilities of 
stress asymmetry in special geological settings, for 
example in the vicinities of fault tips during short periods 
of crack initiation or propagation. This paper does not 
propose to prove the existence of such circumstances, 
but rather to investigate the possible ramifications for 
structures if stress is ever asymmetric in rocks. 

The modified Mohr construction Jbr stress 

To clarify the relationship between orientations of 
planes and stresses acting upon them in two dimensions, 
Fig. 2(a) illustrates a symmetric stress state defined by 
principal stresses, o~ and 02, along with the stress acting 
on an arbitrary plane (7 and its shear and normal com- 
ponents (7~ and (7,, parallel to the plane's trace, t, and 
normal, n, respectively. The plane's trace is shaded to 
distinguish it from the normal and the angle of stability q~ 
(the angle whose tangent is (7~/(7n), is also shown. The 
stress state is represented in Fig. 2(b) by a Mohr circle 
with pole p (see Allison 1984). The circle is centered on 
the horizontal normal stress axis which it intersects at (7~ 
and (72 . Lines joining these points to the pole define the 
principal directions. The vertical co-ordinate axis is 
shaded like a plane's trace so as to emphasize the fact 
that angles between stress vectors and this axis in Mohr 
space are equal to equivalent angles between stress 
vectors and planes in geographic space. 

Following the classical construction (e.g. Mandl 1988, 
p. 239), the stress (7 on a given plane, t. is obtained by 
drawing a parallel line through p and marking its inter- 
section with the circle at (7 (Fig. 2c). The main disadvan- 
tage of this construction is that it gives the incorrect 
sense for the shear stress, o~, and angle of stability, p, 
relative to the normal and shear axes. It is essential to 
address this problem before introducing off-axis Mohr 
circles for asymmetric stress in order to avoid confusion. 
Figure 2(d) shows an alternative stress construction 
using the 'second kind' of Mohr circle (De Paor & Means 
1984). To determine the stress on a plane of trace t, a 
shaded line is drawn through the pole, p. to meet the 
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(a) Stress state in (b) Pole construction 
geographic space (Allison 1984) 
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(c) Mandl construction 
(Mandl 1988) 

(d) Mohr circle of 2nd. Kind 
De Paor & Means (1984) 

il / / \ o  

(e) Asymmetric stress state (f) 0ff-axis stress circle 

Fig. 2. (a) Stress, o, on a plane trace, t (shaded), in a stress state defined by the ellipse with principal semiaxes o I and o2.  n is 
the normal to the plane, on and o:~ are normal and shear stress components,  and ~ is the angle of stability. (b) Pole 
construction for the stress state in (a). P is the pole; lines joining it to ol and ~ are parallel to the principal stresses (see 
Allison 1984). (c) Mandl's (1988) convention for the stress construction. Arrow indicates relation between polep  and stress 
o on given plane (shaded). Note that the shear stress, o~, and angle of stability, q), are reversed from (a). (d) De Paor & 
Means's (1984) convention for the stress construction (second kind). Arrow indicates relation between pole p and stress on 
plane o. q is second point of intersection of stress o with circle and p q  is parallel to the direction of cr in geographic space. All 
angles arc correct in sense when compared with (a). (e). Asymmetric stress: note enhanced dextral shear component,  o~. 

(f) Off-axis construction for asymmctric stress. ~ is the mean shear stress. Other symbols are in (d). 

circle at t. Point p is then moved around the circle until 
the shaded line is vertical, parallel to the shaded (& axis. 
This gives the total stress, (7, with a correct sense of 
shear stress, o~, and also a correct sense for the stability 
angle, qS. In addition to resolving the reversal of shear 
sense problem, the construction has a new property (De 
Paor 1987); the direction of the stress vector, o, in 
geographical space is parallel to p-q,  where q is the 
second point of intersection of the stress, o, with the 
Mohr circle. 

The off-axis Mohr construction for stress 

The case of asymmetric stress is illustrated in Figs. 
2(e) & (f) where the plane, t, and its normal,  n, are 

unchanged from Fig. 2(a). The stress circle and its pole, 
p, are shifted off-axis by an amount  6~, the mean shear 
stress. The maximum and minimum principal stresses 
are marginally greater  in magnitude; they are rep- 
resented on the Mohr circle by diametrically opposite 
points furthest from and nearest to the origin but, being 
off-axis, they are no longer directions of zero shear stress 
and they act on an orthogonal pair of planes to which 
they are slightly oblique. There are two directions of 
zero shear stress in the case illustrated in Fig. 2(f) 
because the Mohr  circle intersects the horizontal, crs = 0, 
co-ordinate axis twice, but they are not orthogonal 
directions; they could be only one or none if ~ equalled 
or exceeded the radius of the circle, as the points of 
intersection of the circle and the normal stress axis 
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Fig. 3. Loci of normal (dotted) and shear (dashed) stresses drawn as polar graphs with origin at center of the stress ellipse. 
Two plane traces (shaded), one primed, the other unprimed are shown at _+45 ° to the horizontal; they intersect the shear 
stress locus at a distance equal to the shear stress acting on them. Normals intersect the a n locus at a distance equal to the 
normal stress on the plane. Total stress acting on each plane is indicated by dots. (a) Symmetric case: note the four-fold 
symmetry of the shear locus which means that shear stresses on orthogonal planes are equal in magnitude. (b) Asymmetric 

case: note asymmetric orientation and two-fold symmetry of both loci. 

would then become complex numbers. The most im- 
portant difference between the illustrated symmetric 
and asymmetric stress states is that dextral shear stresses 
are enhanced in the latter case. The curious, apparently 
sinistral, effect upon the orientation of the stress ellipse 
results from the conventional treatment of compressive 
stresses as positive in geological studies. 

Figure 3 shows polar loci of normal and shear stress 
for (a) symmetric and (b) asymmetric stress states 
(reproduced from De Paor 1981). The principal stresses, 
al and a2, act on vertical and horizontal planes in both 
(a) and (b). A ray drawn outwards from the center of 
each plot represents the direction of the pole to a plane 
and the distance along the ray to the dotted locus 
represents the normal stress on the plane, o°. A shaded 
perpendicular line represents the trace of the plane and 
the distance out along it to the dashed locus indicates the 
shear stress, os. The locus of total stress, o, is the stress 
ellipse itself (solid line) and a dot marks the total stress 
vector for the plane in question. The primed quantities, 
a~, a~ and o ' ,  are the normal, shear and total stresses on 
a perpendicular plane. Normal stresses, on and a~,, are 
equal in the symmetric case only because the primed and 
unprimed planes were chosen at _+45 ° to the principal 
directions: in the asymmetric case, normal stresses are 
marginally different. Shear stresses, o, and a's, are equal 

in magnitude on any pair of perpendicular planes in the 
symmetric case (the shear stress locus has four-fold 
symmetry), but in the asymmetric case, shear stresses on 
perpendicular planes are clearly different. These loci 
have implications for regional stress analyses (e.g. 
Engelder & Geiser 1980) where stress asymmetries may 
result in very different populations of conjugate faults, 
for example. 

Couple stress and Riedel shears 

To investigate the consequences of couple stress 
further, Figs. 4(a) & (b) illustrate changes with depth of 
the Mohr envelope for stress in conjunction with a Mohr 
stress circle (cf. Bayly 1992, p. 201). The effective stress 
state is given by the position of each Mohr circle relative 
to the corresponding Mohr envelope (moving the envel- 
ope to the right instead of moving the circle to the left 
gives a much clearer indication of the actual stresses at 
failure). With increasing depth, pore pressure drives the 
envelope to the right and increasing total stresses drive 
the Mohr circle also to the right. The circle's radius is 
increased as a result of enhanced stress difference during 
tectonism. Depending on the relative magnitudes of 
these changes, effective stresses may increase or de- 
crease. Passing down through an over-pressured zone, 
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Fig. 4. Interpretation of Riedel shears using Mohr constructions (see 
tcxt). (a) Symmetric case: the applied stress and pore pressure build up 
until Mohr envelope and circle touch at two points, leading to 
conjugate Riedel shear structures indicated by short arrow, d = dextral 
stress acting on plane parallel to spzs = sinistral stress acting on plane 
parallel to dp. (b) Asymmetric stress build-up with development of 

only the dcxtral shear set from (a). 

(b) 

Fig. 5. (a) Fracturing along vein parallel to tp owing to stress o which 
lies on the linear failure envelope F (any stress a in the arc of the Mohr 
circle intersected by F is unstable for a pre-existing fracture). 
(b) Development of en 6chelon veins by a combination of stress 
difference, disequilibrium and fluid pressure. The vein orientation tp is 
steeper than in (a) because the point of tangency a of the Mohr circle 
and intact rock envelope 1 is different. Note that stress asymmetry is 
required to prevent development of a conjugate vein orientation o-p. 

Couple stress and en #chelon vein arrays 

the envelope is displaced more rapidly than the circle 
and eventually touches it, signifying failure. In Fig. 4(a), 
the stress state is symmetric and there are two simul- 
taneous failure planes developed. Their directions in 
space are obtained by the pole construction of Fig. 2(d) 
and correspond to classical Riedei shear directions. For 
a maximum principal stress oriented at 45 ° to a shear 
zone boundary the pole, p, is located at the lowest point 
on the circle. Dextral shear failure (stress = d) occurs on 
planes whose orientation is obtained by joining the 
opposite point (plane = s) to the pole, p. Similarly, 
sinistral shear failure (stress = s) occurs on planes whose 
orientation is obtained by joining the opposite point 
(plane = d) to the pole, p (see Fig. 2d). 

In Fig. 4(b), by contrast, the stress state is asymmetric 
with enhanced dextral shear. Consequently, the Mohr 
circle touches the Mohr envelope at one point, d; the 
high-angle, sinistral, antithetic Riedel shear set does not 
develop in this case. The orientation of the dextral 
Riedel failure set (stress = d) is obtained again by 
joining the opposite point (plane = s), to the polep (Fig. 
4b). Figure 4(b) may exaggerate the degree of asym- 
metry which might occur in practice but it is important to 
note that an infinitesimal departure from symmetry in 
the stress may be sufficient to suppress the development 
of conjugate failure planes. 

Stress asymmetry also has implications for the devel- 
opment of vein arrays. Figure 5 shows the failure envel- 
ope for a pre-existing fracture plane F which is weaker 
than the envelope for the intact rock I. When stress 
builds up to the point where a pre-existing plane t 
becomes unstable, shear failure occurs and fluid passes 
along the plane of the vein. The stress difference is 
reduced by the failure, and so the size of the Mohr circle 
shrinks, but the Mohr envelope is simultaneously dis- 
placed by fluid pressure change which causes an effec- 
tive stress drop. If the stress state becomes asymmetric 
during the period of non-equilibrium loading, the Mohr 
circle may rise off the reference axis and touch the 
parabolic intact rock envelope at a single point with an 
angle of tangency different from the angle for the pre- 
existing plane of weakness. This may explain the devel- 
opment of a fringe of asymmetric, en 6chelon veins as 
after-shocks around the edge of an extant vein. In the 
absence of stress asymmetry, one would expect to see a 
pair of conjugate en 6chelon vein arrays of opposing 
s e n s e .  

STRAIN THEORY 

Whilst deformation is known to be rotational in gen- 
eral, therefore requiring an asymmetric tensor represen- 
tation, strain analysts have usually concentrated on the 
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practical goal of measuring the irrotational component  
of deformation,  using methods such as Re~q) analysis 
(Dunnet  1969) or the Fry technique (Fry 1979). The 
amount  of rotation in a finite deformation is rarely 
quantifiable, except where a rigid block contains paleo- 
magnetic indicators, but a sense of rotation can com- 
monly be deduced. The vortical nature of flow has been 
recognized in mylonites and has been described using an 
asymmetric velocity gradients tensor (Truesdeli 1954, 
Means et al. 1980, Lister & Williams 1983, Passchier 
1986, 1987, 1988). It is now possible to measure the 
sense of vorticity (Simpson & Schmid 1983, Hanmer  & 
Passchier 1991), the ratio of strain rate to recrystalliza- 
tion rate (Passchier & Simpson 1986) and the cumulative 
ratio of pure shehr to simple shear in a general shear 
zone (Simpson & De Paor 1993), provided one assumes 
constant flow conditions. However ,  it is known that 
deformation events wax and wane with periods of acce- 
lerating and decelerating flow during which the instan- 
taneous strain axes spin, yet acceleration gradients in 
rocks have not been addressed by structural geologists. 

Rotational deformation and vortical f low 

Figure 6 illustrates the Mohr construction for ro- 
tational deformation (De Paor 1983, De Paor & Means 
1984), a polar plot in which stretch, S, is the radial co- 
ordinate and rotation, a ,  is the tangential co-ordinate. 
The distinction between this construction and that of 
Means (1983) merits some explanation. Because the co- 
ordinates are polar,  the vertical is chosen as zero direc- 
tion and so the circle is centered on a vertical axis when 
deformation is irrotational. Dextral rotation shifts the 
circle off-axis to the right and sinistral shifts it to the left. 
The Mohr circle's pole, P, is an anchor point (Simpson & 
De Paor 1993) through which lines drawn in particular 
spatial orientation (a, b, c) may be linked to correspond- 
ing points on the polar plot. Means 's  (1983) pole would 
plot diametrically opposite P. The open dots in Fig. 6(a) 
represent three arbitrary combinations of  stretch and 
rotation (S, a)  which plot on the per imeter  of the Mohr 
circle. The second points of intersection with the Mohr 
circle, labelled Q,, Qb, Q,. are joined to the pole P to 
give the spatial orientations of dotted lines a, b and c in 
the final state. Angles are measured in the same sense in 
Mohr space and geographical space as indicated by the 
arrow. The initial orientation, PQo, of a line, and its 
rotation, ~z, to the final orientation, are obtained (Fig. 
6b) by dropping a vertical line (dotted) from point S to 
point Q.  on the Mohr circle and then joining Q0 through 
P (dotted line). The sense of rotation, cz, is correctly 
represented in Mohr space and geographic space, as 
indicated by the arrows. 

Polar loci of  stretch, shear strain and rotation 

To determine the shear strain of any line with final 
orientation PQ in geographical space, the line's stretch S 
is located on the Mohr circle and the initially perpen- 
dicular stretch S ~ is marked diametrically opposite S 

Sc Sb 

.,,'"'" ..b 
..... :::::::::::::::::::::::: .... 

,#~iiii::::: ......... 
..:::;!~!!io' ,D 

c~ b 
o-it 

(a) 

~ Q0 (b) 

~ ~ p : : : : : :  ...... ~,,,,~ 

~ /~ (c) 

Fig. 6. (a) Polar Mohr construction for stretch S (radial co-ordinate) 
and rotation ct (tangential co-ordinate). Open dots labeled S,,, S h and 
S<. represent three lines a, b and c. Points labeled Q,, Q~, and Q,. are 
second intersection points as explained in text. Arrows indicate 
compatible senses of angles measured in geographical and Mohr 
space. (b) Construction relating initial (dotted) and final (solid) line 
orientations after stretch, S, and rotation, ~. Sense of rotation indi- 
cated by arrows. Angle rz is doubled on the perimeter of the Mohr 
circle. See text for explanation. (c) Construction for angular shear q, ot 
dashed lines QP, Qip. Their stretches S, S ± plot diametrically 

opposite each other on the Mohr circle. 

(Fig. 6c). The second intersection point Q~ is joined to 
the pole P to give the final orientation PQ* of a line 
initially perpendicular to PQ and the subtended angle, 
zr/2 - qJ, gives the deflection from orthogonality. The 
required angular shear is q~ and the shear strain is ), = 
tan(qJ). Interesting patterns are obtained (Fig. 7) by 
plotting polar loci of stretch, S, and shear strain, 7, for 
(a) symmetric and (b) asymmetric deformation tensors. 
The distance along a ray from the origin to the strain 
ellipse (solid line) gives the stretch S for the ray's final 
orientation and the distance to the four-leaved locus 
(light line) gives the magnitude of the shear strain 7 (the 
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Fig. 7. (at l.oci of sirctch S (bold ellipses) and shear strain ), (thin 
four-lcaf curves) for symmetric deformation tensor. (b) Same loci 
retain their s)<mmctry for asvmmen'ic deformation. Arrow indicates 

sense of rotation ol ellipse long axis. 

same unit was chosen for trait s t re tch and unit  shear  
s train) .  Note  that  the shear  strain locus re ta ins  mi r ro r  
s y m m e t r y  with respect  to the pr incipal  d i rec t ions  desp i te  
the a s y m m e t r y  of  the d e f o r m a t i o n  tensor .  This demon-  
s t ra tes  the fundamen ta l  d i f ference  be tween  shear  s train 
and shear  stress,  which was found  to be  a symmet r i c  for 
a symmet r i c  stress s ta tes  (Fig. 3b).  The  o r t h o r h o m b i c ,  
ra ther  than t e t ragona l ,  s y m m e t r y  of  the shear  strain loci 
d e m o n s t r a t e s  that  shear  strains of  finally o r thogona l  
lines differ  in magn i tude ,  in cont ras t  to shear  s t rains  of  
init ially o r thogona l  lines. 

Unl ike  loci of  shear  s t ra in ,  loci of  ro ta t ion  (Figs.  8a-c )  
show a m a r k e d  a s y m m e t r y  in a symmet r i c  de fo rma t ion  
(cases b and c). This a s y m m e t r y  compr i ses  an obl iqui ty  
to the pr incipal  d i rec t ions  and a skewness  when com- 
pa red  with the swnmet r i c  case of  Fig. 8(at .  The  d is tance  
'<llong a ray represen t s  the ro ta t ion  in rad ians  for a l ine in 
the final o r i en ta t ion  of  the ray (the same unit is used for 
rad ians  and s t re tch) .  The locus for  sub-s imple  shear  (De  
Paor  1983) conta ins  two d i rec t ions  of  no ro ta t ion  separ-  
a t ing re la t ively  large,  dex t ra l ,  fo rward  ro ta t ions  f rom 
rc la t ixe ly  small ,  s inistral ,  back- ro ta t ions .  The  super-  
s imple shear  locus (Fig. 8,c) has a skewed  dumb-be l l  
shape reflect ing the ro ta t ion  of  all l ines in a dext ra l  sense 
but by differ ing amounts .  

A C C E L E R A T I N G  F L O W  

To descr ibe  acce le ra t ing  d e f o r m a t i o n ,  we emp loy  the 
Mohr  cons t ruc t ions  for flow and acce le ra t ion  i l lus t ra ted  
in Figs. 9(at  & (b),  respect ively .  Two examples  of  
unsteacty flow arc i l lus t ra ted;  in Fig. 9(c),  de fo rma t ion  
begins as pure  shear  but  with t ime becomes  increas ingly  
d o m i n a t e d  by s imple shear  whilst  in Fig. 9(d),  an initial  
inc rement  of  s imple shear  is fo l lowed by dominan t ly  

Pure rotation=O 
Shear ~ 

= 

rotation=0 

shear +tat+=O . f  

rotation=ma×imum 

~iu$;.Ire 

rotation=minimum (c) 

Fig. 8. Loci of stretch (ellipses) and rotation (other curves) for (at 
pure shear, (b) sub-simple shear and (c) super-simple shear. Straight 
lines mark eigendirections (directions of no rotation) in (at and (b). In 
(cL lines mark minimum and maximum rotation directions in the final 

state. 

(a) (b) 

(c) (a) 

SS>PS PS>SS 

Fig. 9. (at Off-axis Mohr construction for flow (velocity gradients 
tensor). Vertical axis represents longitudinal strain rate, horizontal 
axis represents rate of rotation of material lines. Vertical offset of 
Mohr circle related to Passchier's dilatancy number. Horizontal offset 
determined by vortical component of flow. Cos(v) is the kinematic 
vorticity number (Bobyarchick 1986). (b) Off-axis Mohr construction 
for acceleration gradients. Vertical axis represents rate of stretching, 
horizontal axis represents angular acceleration of material lines. 
(c) Unsteady flow involving more simple shear with time. (d) 

Unsteady flow involving more pure shear with time. 
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i nc rement  i 

i nc rement  i+1 

(a) 

(b) 
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Fig. I11. (a) Close-up view of the top left-hand corner of deformed 
unit square and off-axis Mohr circles for two unsteady strain incre- 
ments i and i + 1. Change Av in inclined v eigenvector in region 
marked by double-headed arrow results in zone of rotation reversal. 
(b) Polar plot of axial ratio vs orientation of porphyroclasts showing 
sense of rotation and eigenvectors of flow regime (straight lines). Also 
shown are locus of end-orientations (bold hyperbolic curve) and zone 
subject to rotation reversal during spin of the flow field (double- 
headed arrow). Straight lines are eigendirections. Note paucity of 
fabric elements oriented in directions that might record rotation 

reversal. 

pure shear. In both cases, there is a gradual change Av in 
the angle v between lines of no angular velocity (flow 
eigenvectors or apophyses, a '  = 0) so that directions 
oriented between the inclined eigenvector for a defor- 
mation increment, i, and the next increment, i + 1, 
change their sense as well as their rate of rotation. 
However,  the effects of acceleration on visible rock 
fabrics may not be great because the directions con- 
cerned may not be populated by many identifiable fabric 
elements. Figure 10 is a polar plot of object axial ratio vs 
orientation (see Simpson & De Paor 1993). The direc- 
tions of dynamically recrystallized tail growth are all 
safely within the field of forward rotation and a slight 
change in the angle v between the eigenvectors does not 
deflect them. The best opportunity for retaining a record 
of unsteady flow occurs when crystals grow during 
deformation. Elongate inclusions may then serve as 
longitudinal markers and they may reveal a gradual 
change in the angle between eigenvectors. Finally, it 
should be noted that sudden changes in flow regime are 
more likely to leave a recognizable signature in the form 
of fabric discontinuities. Indeed, many of the truncation 
structures described by Bell & Johnson (1989) and Bell 
et al. (1992) might be amenable to reinterpretation in 
terms of unsteady flow and pulsating porphyroblast 
growth. Future field and laboratory research should 
investigate this possibility. 

Continuum mechanics has greatly aided our under- 
standing of geological structures (Nadai 1950, Biot 1965, 
Ramsay 1967, Jaeger & Cook 1968, Ramberg 1975, 
Means 1976, Mandl 1988, Bayly 1992). However,  many 
assumptions introduced by continuum mechanicists 
were intended to render theoretical systems simple 
enough to be described mathematically and need to be 
reviewed in practical rock deformation studies. With the 
aid of off-axis Mohr circles, stress may be viewed as an 
asymmetric tensor phenomenon,  deformation as an im- 
pure, unsimple and inhomogeneous transformation, 
and flow as an unsteady phenomenon involving inflation 
or deflation and spinning acceleration. The result of 
such relaxation of assumptions is a loss of quantitative 
constraint; however, truly quantitative estimates of de- 
formation conditions are extremely rare, difficult to 
evaluate for accuracy and precision, and of questionable 
intrinsic value (does it matter whether a stress is 5.0 or 
5.1 MPa, whether a strain ratio is 2.5:1 or 2.6:1 or 
whether a kinematic vorticity number is 0.6 or 0.65?). A 
semi-qualitative descriptive system that approximates 
what is seen in rocks is preferable to a rigorously quanti- 
tative one that ignores reality. The merit of the approach 
taken in this paper should be judged in terms of the 
insight gained by students of structures in the field. 
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